Research  >  Micro-organisms biophysics

Micro-organisms biophysics

Microorganisms represent the dominant forms of life on Earth. They display a huge diversity of geometric shapes, behaviours and habitats. We are particularly interested in bacteria. Their size — on the order of microns — and their lifetime — on the order of hours — enable exploring from single cell level to heterogeneous, socially organized populations. We study these systems based on the development of dedicated microfabricated microfluidic devices, coupled with the most recent advances in genetics and video-microscopy and fluorescence imaging approaches. Our objective is to understand the mechanisms underpinning the behaviour of these systems under controlled environments, unveiling the causal relationships linking their physical and biological properties.


Phenotypic variability Biofilm microrheology Multi-species adherent communities Biofilm under flow Mutagenesis: Single-Cell, Real-Time Microfluidics of Epilithic Biofilms: impact of chlordecone Physics of bacterial colony spreading

Other related page

Cell cycle

Related job openings

2018
2019
Master 2
Following mutation dynamics and effects directly in single living cells
2018
2019
Master 2
Micro-organism network : cooperation and/or competition

Publications

2018

The inducible chemical-genetic fluorescent marker FAST outperforms classical fluorescent proteins in the quantitative reporting of bacterial biofilm dynamics - Scientific Reports
A. Monmeyran , P. Thomen , H. Jonquiere , F. Sureau , C. Li , M.a. Plamont , c. Douarche , j.F. Casella , A. Gautier , N. Henry
  URL Full text PDF Bibtex doi:10.1038/s41598-018-28643-z
Mutation rates and effects in single cells - Science
L. Robert , J. Ollion , J. Robert , X. Song, , I. Matic, , M. Elez
  URL Full text PDF Bibtex doi:10.1126/science.aan0797
Intermittent Pili-Mediated Forces Fluidize Neisseria meningitidis Aggregates Promoting Vascular Colonization - Cell
D. Bonazzi , V. Lo Schiavo , S. Machata , I. Djafer-Cherif , P. Nivoit , V. Manriquez , H. Tanimoto , J. Husson , N. Henry , H. Chate , R. Voituriez , G. Dumenil
  URL Full text PDF Bibtex doi:10.1016/j.cell.2018.04.010
Archaeal cells share common size control with bacteria despite noisier growth and division - Nature Microbiology
Y.J. Eun , P.Y. Ho , M. Kim , S. LaRussa , L. Robert , L. Renner , A. Schmid , E. Garner , A. Amir
  URL Full text PDF Bibtex doi:10.1038/s41564-017-0082-6
Method for Detecting and Studying Genome-Wide Mutations in Single Living Cells in Real Time - Methods Mol Biol
M. Elez , L. Robert , I. Matic
  URL Full text PDF Bibtex doi:https://doi.org/10.1007/978-1-4939-7638-6_3

2017

2016

Single-cell analysis of growth in budding yeast and bacteria reveals a common size regulation strategy - Current Biology
I. Soifer , L. Robert , A. Amir
  URL Full text PDF Bibtex doi:10.1016/j.cub.2015.11.067

2015

Single-Cell Analysis of Growth and Cell Division of the Anaerobe Desulfovibrio vulgaris Hildenborough - Frontiers in Microbiology
A. Fievet , A. Ducret , T. Mignot , O. Valette , L. Robert , R. Pardoux , A. Dolla , C. Aubert
  URL Full text PDF Bibtex doi:10.3389/fmicb.2015.01378
Size sensors in bacteria, cell cycle control, and size control - Frontiers in Microbiology
L. Robert
  URL Full text PDF Bibtex doi:10.3389/fmicb.2015.00515
Statistical estimation of a growth-fragmentation model observed on a genealogical tree - Bernoulli
M. Doumic , M. Hoffmann , N. Krell , L. Robert
  URL Full text PDF Bibtex doi:10.3150/14-BEJ623

2014

Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism - BMC Biology
L. Robert , M. Hoffmann , N. Krell , S. Aymerich , M. Doumic
  URL Full text PDF Bibtex doi:10.1186/1741-7007-12-17